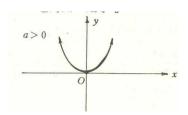
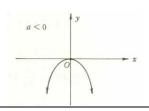
Unit21 二次函數

能力指標:◎(A-4-06)能以具體情境來理解二次函數的意義。

- ◎ (A-4-06) 能理解二次函數的樣式並繪出其圖形。
- ◎(A-4-06)能利用配方法繪出二次函數的圖形。
- ◎ (A-4-06) 能計算二次函數的最大值與最小值。
- ◎ (A-4-06) 能應用二次函數最大值與最小值的簡單性質。
- ◎ (A-4-06、A-4-07) 能理解二次函數的圖形與拋物線的概念。
- ◎(A-4-07)能理解拋物線的線對稱性質。

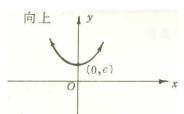

能力一:二次函數的圖形

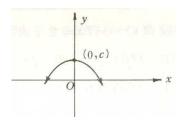
- 一、二次函數的圖形
 - 二次函數型如 $y=ax^2+bx+c$ $(a \neq 0)$ 的函數,稱為二次函數,其函數圖形為拋物線。
- 二、二次函數各種圖形變化之歸納


二次函數的標準式: $y=ax^2+bx+c$ $(a \neq 0)$

類型一: y=ax² (b=c=0),此時拋物線頂點在【原點】,對稱軸為【y軸】。

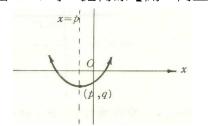
① 當 a > 0 時,拋物線【開口向上】, 當 a 值愈大,開口愈小。

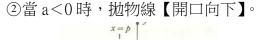

② 當 a>0 時,拋物線【開口向下】, 當 a l 值愈大,開口愈小。

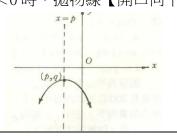

類型二: $y=ax^2+c$ (b=0),此時拋物線的頂點為(0,c),對稱軸為【y軸】;其

圖形是將【類型一: $y=ax^2$ 】的圖形在y軸上,移動c個單位。

① 當 a>0 時,拋物線【開口向上】。




②當 a<0 時,拋物線【開口向下】。



類型三:將 $y=ax^2+bx+c$ $(a \neq 0)$,利用配方法化為 $y=a(x-p)^2+q$ 。

- ①拋物線頂點座標為(p,q); ②對稱軸為x-p=0
- ③圖形係將 $y=ax^2$ ⇒圖形在 y 軸方向上下移動 q 個單位; 圖形在 x 軸方向左右移動 p 個單位。
- ① 當 a>0 時,拋物線【開口向上】。

【二次函數的圖形】

講解一:

- (1) 二次函數圖形的頂點為座標原點,對稱軸為 y 軸,且通過點(1,5),試求 此二次承數為何呢?
- (2) 已知有三點座標 A(0,-5)、B(1,-8)、C(4,-5) 在二次函數圖形上,試求 此圖形之頂點座標、及其與 x、y 軸的交點為何呢?

Sol)

- (1) 設此二次函數為y=ax², Q 通過點(1,5) \Rightarrow 5=a×1² \Rightarrow a=5 ∴ 二次函數為 y=5x²
- (2) 設此二次函數為y=ax²+bx+c 將 (0,-5), (1,-8), (4,-5)代入 \Rightarrow a=1, b=-4, c=5 \Rightarrow y=x²-4x-5

J頁點座標 \Rightarrow y=x²-4x-5= $(x^2-4x+4)-9=(x-2)^2-9$ \Rightarrow J頁點(2,-9)

與x軸交點座標 $\Rightarrow \Leftrightarrow y=0 \Rightarrow x^2-4x-5=0 \Rightarrow (x+1)(x-5)=0$,x=5或(-1) \Rightarrow (5, 0) \neq (-1, 0)

與y軸交點座標 \Rightarrow \Leftrightarrow $x=0 \Rightarrow y=-5 \Rightarrow (0,-5)$

練習一:

- (1)二次函數圖形通過(0,3)、(1,4),且對稱於y軸,試求此二次函數為何呢?
- (2) 如圖, 拋物線與直線交於 A(2,-3)、C 兩點, 且直線 L 交 x 軸於 B(4,0), 請問 C 點座標為何呢?

Sol)

(1)設二次函數 \Rightarrow y=ax²+b

將
$$(0,3), (1,4)$$
代人 \Rightarrow $\begin{cases} 3=a \times 0^2 + b \\ 4=a \times 1^2 + b \end{cases} \Rightarrow a=1, b=3 \Rightarrow y=x^2+3$

(2)Q 拋物線頂點為原點,並以y軸為對稱軸,令 y=ax²

$$A(-2,3) \Rightarrow 3=a \times (-2)^2 \Rightarrow a=\frac{3}{4} \Rightarrow y=\frac{3}{4}x^2$$
設直線方程式為y=mx+n,將(-2,3), (4,0)代入
$$\Rightarrow \begin{cases} 3=-2m+n \\ 0=4m+n \end{cases} \Rightarrow 得 m=\frac{-1}{2}, n=2 \Rightarrow y=\frac{-1}{2}x+2$$

$$\Rightarrow \begin{cases} y=\frac{3}{4}x^2 \\ y=\frac{-1}{2}x+2 \end{cases} \Rightarrow 3x^2+2x-8=0 \Rightarrow (3x-4)(x+2)=0, x=\frac{4}{3}或(-2)$$

$$x=\frac{4}{3}$$
代入y= $\frac{-1}{2}x+2$ 得 $y=\frac{4}{3}$ \Rightarrow $C\left(\frac{4}{3},\frac{4}{3}\right)$

【二次函數圖形的移動】

講解二:

- (1) 將二次函數 $y=x^2+3x$ 之圖形向右平移 2 個單位,請問新圖形的二次函數為何呢?
- (2) 將二次函數 y=-2x²+4x+3 之圖形向左平移 3 個單位,再向下平移 2 個單位 後,請問新圖形的二次函數為何呢?

Sol)

(1)
$$y=x^2+3x=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}$$
 ⇒ 頂點座標 $\left(\frac{-3}{2},\frac{-9}{4}\right)$, 圖形向右平移2單位 ⇒ 頂點座標 $\left(\frac{-3}{2}+2,\frac{-9}{4}\right)=\left(\frac{1}{2},\frac{-9}{4}\right)$ 新圖形二次函數 ⇒ $y=\left(x-\frac{1}{2}\right)^2-\frac{9}{4}$ ⇒ $y=x^2-x-2$

(2)
$$y=-2x^2+4x+3=-2(x-1)^2+5$$
 ⇒ 頂點座標(1,5) 圖形向左平移3個單位,再向下平移2個單位, ⇒ $(1-3,5-2)$ ⇒ $(-2,3)$ ⇒ $y=-2(x+2)^2+3$ ⇒ $y=-2x^2-8x-5$

練習二:

- (1) 有一拋物線通過(2,-1)、(1,1),經過平移後與 $y=-2x^2$ 的圖形重合,請問此 拋物線之二次函數為何呢?
- (2) 將 $y=ax^2+bx+c$ 的圖形,向左移 2 單位,再向上移 1 單位,得 $y=2x^2-9x+14$,請問 $a \cdot b \cdot c$ 之值為何呢?

Sol)

(1) 設拋物線 $y=-2x^2+bx \Rightarrow 通過(1,1),(2,-1)$

$$\Rightarrow \begin{cases} 1 = -2 + b + c \\ -1 = -8 + 2b + c \end{cases} \Rightarrow \begin{cases} b + c = 3 \\ 2b + c = 7 \end{cases} \Rightarrow b = 4, c = -1 \Rightarrow y = -2x^2 + 4x - 1$$

(2)平移後a值不變 ⇒ a=2

$$y-1=2(x+2)^{2}+b(x+2)+c$$

$$y-1=2(x^{2}+4x+4)+bx+2b+c \Rightarrow y=2x^{2}+(8+b)x+9+2b+c$$

$$\begin{cases} 8+b=-9\\ 9+2b+c=14 \end{cases} \Rightarrow b=-17, c=39 \Rightarrow a=2, b=-17, c=39$$

【十分鐘即時練習】

(A) 1.下列那一個函數圖形的開口最大?

(A)y=
$$-\frac{1}{3}x^2$$
 (B)y= $-\frac{3}{4}x^2$ (C)y= $-\frac{1}{2}x^2$ (D)y= $\frac{3}{2}x^2$

Sol): 在二次函數 $y=ax^2$ 中,|a| 值愈小,則其開口愈大,

又:
$$\left| -\frac{1}{3} \right| = \frac{1}{3}$$
, $\left| -\frac{3}{4} \right| = \frac{3}{4}$, $\left| -\frac{1}{2} \right| = \frac{1}{2}$, $\left| -\frac{3}{2} \right| = \frac{3}{2}$,其中
最小者為 $\frac{1}{3}$ ∴ $\mathbf{v} = -\frac{1}{3}$ \mathbf{x}^2 的開口最大。

(A) 2.坐標平面上,(2,3)這點會在下列那一個二次函數的圖形上?

(A)y=
$$\frac{1}{2}x^2+1$$
 (B)y= $\frac{1}{3}x^2-1$ (C)y= $(x+2)^2+3$ (D)y= $2x^2+3$

Sol)分別以(2、3)代入 $y = \frac{1}{2} x^2 + 1 \cdot y = \frac{1}{3} x^2 - 1 \cdot y = (x+2)^2 + 3 \cdot y = 2x^2 + 3 中$,

發現只有
$$3 = \frac{1}{2} \times 2^2 + 1$$
 是成立的 ∴點 $(2 \cdot 3)$ 在 $y = \frac{1}{2} x^2 + 1$ 的圖形上。

(C) 3.下列那一個二次函數圖形會經過原點?

(A)
$$y = -5x^2 + 12$$
 (B) $y = x^2 - 3$ (C) $y = 2x^2 + 3x$ (D) $y = -2x^2 - 4x - 2$

Sol) 若一函數之函數圖形通過原點,則其常數項為0,而在選項中,只有 $(C)y=2x^2+3x$ 的常數項為0。

(A) 4.二次函數 $y=x^2-1$ 的對稱軸方程式為下列何者選項?

$$(A)x=0$$
 $(B)y=-1$ $(C)y=0$ $(D)x=-1$

Sol) $y=x^2-1$ 的圖形頂點為(0,-1),對稱軸為y軸,故對稱軸方程式為x=0。

(C) 5.二次函數 $y = -2x^2 + 3$ 圖形的頂點坐標為下列何者選項?

$$(A)(-2, 3)$$
 $(B)(3, -2)$ $(C)(0, 3)$ $(D)(3, 0)$

Sol) $y = -2x^2 + 3$ 的頂點坐標為(0, 3)。

能力二:二次函數的極值

一、配方法及公式法

標準式
$$y=ax^2+bx+c \Leftrightarrow y=a(x-p)^2+q$$

$$\Rightarrow y=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x^2+2\cdot\frac{b}{2a}x+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2\right)+c$$

$$= a \left(\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \right) + c = a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c = a \left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a}$$

$$\Rightarrow \Leftrightarrow p = \frac{-b}{2a}, q = \frac{4ac-b^2}{4a} \Rightarrow y = a(x-p)^2 + q$$

⇒ 拋物線頂點座標
$$(p,q)=\left(\frac{-b}{2a},\frac{4ac-b^2}{4a}\right)$$

二、二次承數極值的歸納表

標準式 $y=ax^2+bx+c \Leftrightarrow y=a(x-p)^2+q$

$$y=a(x-p)^2+q \ge q$$

$$y=a(x-p)^2+q \le q$$

$$y=a\left(x-p\right)^2+q\Rightarrow p=rac{-b}{2a}$$
, $q=rac{4ac-b^2}{4a}\Rightarrow$ 拋物線頂點座標 $\left(p,q\right)=\left(rac{-b}{2a},rac{4ac-b^2}{4a}
ight)$

① 當 a>0 時,

若
$$x = \frac{-b}{2a}$$
 時 \Rightarrow y有最小值 $\frac{4ac-b^2}{4a}$

② 當 a<0,

【二次函數的極值】

講解一:

- (1) 二次函數 $y=2x^2-12x+15$, 當 $2 \le x \le 5$ 時, 試求 y 之最大值與最小值=?
- (2)二次函數 y=-3 x^2 +ax+b,當 x=3 時有最大值 4,請問 a、b 為何呢? Sol)

- ⇒ y的最大值為5,最小值為-3
- (2) ∵x=3時有最大值4, y=-3(x-3)² +4=-3x²+18x-23 與 y=-3x²+ax+b比較得 a=18, b=-23

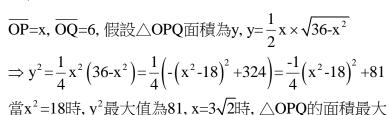
練習一:

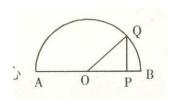
- (1) 設 $0 \le x \le 4$,且 $y=x^2-4x+5$ 之最大值為M,最小值為m,請問M+m=?
- (2) 設 2x+y=100,試求 x^2+y^2 的最小值為何呢?

Sol)

(2) :
$$2x+y=100 \Rightarrow y=100-2x$$

 $x^2+y^2=x^2+(100-2x)^2=5x^2-400x+10000$
 $=5(x-40)^2+2000 \ge 2000$
∴ x^2+y^2 有最小体 2000


【二次函數極值的應用】


講解二:

如圖,Q點是以 \overline{AB} 為直徑的半圓上一點,O是圓心, $\overline{PQ} \perp \overline{AB}$, $\overline{OB} = 6$,假設

 $\overline{OP}=x$, 請問當 x 是多少時 , $\triangle OPO$ 的面積最大呢?

Sol)

練習二:

雲林縣肉品交易市場每1公斤豬肉成本為300元,如果豬肉攤商將每1公斤豬肉定價為400元,則每日可賣600公斤,若每公斤價錢上漲(或下跌x元),則少賣(或多賣)2x公斤,請問:(1)每公斤豬肉的定價為多少時,才可收入最大的金額呢?(2)每公斤豬肉的定價為多少時,才可得到最大的利潤呢?Sol)

(1) 設每公斤豬肉下跌x元時,其收入為y元

$$\Rightarrow y = (400-x)(600+2x) = -2x^2 + 200x + 240000$$
$$= -2(x^2 - 100x + 2500) + 245000 \Rightarrow -2(x - 50)^2 + 245000 \le 245000$$

- ∴ 當x=50, y有最大值 ⇒每公斤的豬肉定價=400-50=350(元)
- (2) 設每公斤上漲x元,可得利潤y元

$$\Rightarrow y = (400+x)(600-2x)-300(600-2x) = (100+x)(600-2x)$$
$$= -2x^2 + 400x + 60000 = -2(x^2 - 200x + 10000) + 80000$$
$$= -2(x-100)^2 + 80000 \le 80000$$

∴ 當x=100時, y有最大值 ⇒ 每公斤的定價=400+100=500(元)

【十分鐘即時練習】

(C) 1.二次函數 $y = -2(x-1)^2 + 3$,下列選項何者正確?

(A)有最小值3 (B)有最小值-3 (C)有最大值3 (D)有最大值-3

sol)
$$y = -2(x-1)^2 + 3$$
 :: $-2(x-1)^2 \le 0$: $y = -2(x-1)^2 + 3 \le 3$, y 有最大值 3 °

(D) 2.二次函數 $y=(x+2)^2-3$,當x=a時,y有最小值,則a=?

$$(A)3 (B)-3 (C)2 (D)-2$$

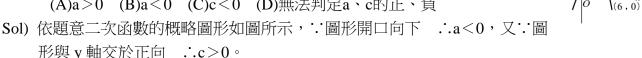
Sol): $y=(x+2)^2-3 \ge -3$.: 當 x=-2 時,y 有最小值-3,"a=-2。

(B) 3.二次函數 $y=-x^2+x+3$ 的最大值等於多少?

(A)3 (B)
$$\frac{13}{4}$$
 (C) $\frac{11}{4}$ (D) $\frac{9}{4}$

Sol)
$$y = -x^2 + x + 3 = -(x^2 - x + \frac{1}{4}) + \frac{1}{4} + 3 = -(x - \frac{1}{2})^2 + \frac{13}{4} \le \frac{13}{4}$$
,y 的最大值 為 $\frac{13}{4}$ 。

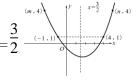
(A) 4.若二次函數 $y=ax^2+bx+c$ 有最小值,則下列選項何者正確? $(A)a>0 \quad (B)a<0 \quad (C)a=0 \quad (D)無法確定a值的正負 \\ Sol) <math>\because v=ax^2+bx+c$ 有最小值 $\therefore a>0$

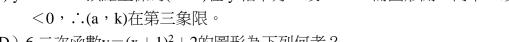

(C) 5.設二次函數 $y=x^2-4x+k$ 的最小值為5,則k=?

Sol)
$$y=x^2-4x+k=(x^2-4x+4)-4+k=(x-2)^2+(k-4) \ge k-4$$
" $k-4=5$... $k=9$

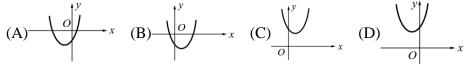
【基本觀念題】

(B) 1.二次函數 $y=ax^2+bx+c$ 的圖形與x軸之交點為(6,0)與(-2,0)且與y軸交 於正向上,則下列選項何者正確?


(A)a>0 (B)a<0 (C)c<0 (D)無法判定a、c的正、負


- (D) 2.二次函數 $y=ax^2+bx+c$ 的圖形交x軸於A(5,0)、B(1,0),交y軸於C(0,0)5),則其頂點在坐標平面上第幾象限?(A)— (B)二 (C)三 (D)四
- Sol) 設 y=a(x-5)(x-1)以(0,5)代入得:5=a(-5)(-1),∴a=1,故 y=(x-5)(x-1) $5)(x-1)=x^2-6x+5=(x^2-6x+9)-9+5=(x-3)^2-4$ 圖形的頂點坐標為(3,-4),在第四象限內。
- (B) 3.若二次函數 $y=ax^2+bx+c$ 的圖形完全在x軸的下方,則下列何者一定正 確? (A)a < 0, $b^2 - 4ac < 0$, c > 0 (B)a < 0, $b^2 - 4ac < 0$, c < 0 (C)a>0, $b^2-4ac>0$, c<0 (D)a<0, $b^2-4ac<0$, 無法判斷c的正負
- Sol) $\because y = ax^2 + bx + c$ 的圖形在 x 軸下方,∴圖形如圖所示,可知 $a {<} 0$, $c {<} 0$, / $b^2-4ac<0$,但無法確定 b 的正負
 - (C) 4.已知二次函數 $y=ax^2+bx+c$ 的圖形通過(-1,1),(4,1),(m,4),(n,4)

4)
$$m n = ?(A) - 1 (B)2 (C)3 (D)5$$


Sol) $y=ax^2+bx+c$ 的大略圖形如圖所示,對稱軸為 $x=\frac{3}{2}$ " $\frac{m+n}{2}=\frac{4+(-1)}{2}=\frac{3}{2}$ $\cdot \cdot m + n = 3$

- (C) 5.如圖,函數 $y=ax^2+k$ 之圖形,則(a,k)屬於第幾象限的點?(A)一 (B)二 (C)三 (D)四
- Sol) $y=ax^2+k$ 頂點坐標為(0,k)在 y 軸下方,故 k<0,而圖形開口向下,故 a<0, ∴(a, k)在第三象限。

(D) 6.二次函數 $y=(x+1)^2+2$ 的圖形為下列何者?

- Sol) $y=(x+1)^2+2$ 圖形的頂點坐標為(-1,2),且開口向上。
- (B) 7. 拋物線 $y = -x^2 x + 2$ 的頂點在第幾象限?(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

(C) 8.y= x^2-5x+6 的圖形不經過第幾象限?(A)—(B)二(C)三(D)四 象限。

Sol)
$$y=x^2-5x+6=(x^2-5x+\frac{25}{4})+6-\frac{25}{4}=(x-\frac{5}{2})^2-\frac{1}{4}$$
,...頂點 $(\frac{5}{2},-\frac{1}{4})$, 開口向上,圖形不過第三象限

- (C) 9.假設 y=-x²+4x+1,請問其極大值為何呢?(A) 無極大值(B) 7(C) 5(D) 3。
- Sol) y=-(x-2)² +5 當 x=2時, y的極大值5
- (D) 10.設二次函數在 x=1 時有最小值2,且 x=0 則 y=3,請問此二次函數為何呢?(A) y=-x²+2x+3(B) y=-x²-2x+3(C) y=x²+2x+3(D) y=x²-2x+3。

Sol)
$$y=a(x-1)^2 + 2 (a>0)$$
 ⇒ $y=3 x=0$ 代入左式 ⇒ $a(-1)^2 + 2=3$ ⇒ $a=1$ ⇒ $y=(x-1)^2 + 2=x^2 - 2x + 3$

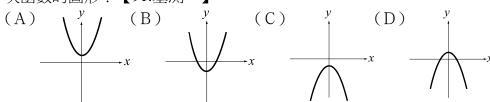
【溫故歷屆基測試題】

- (C) 1.有一算式 "(50-□)×(□+10)",其中兩個□內規定皆填入相同的正整數。例如:當□填入"1"時,"(50-1)×(1+10)=539",即此算式的值為 539。求此算式的最大值為何? (A) 700(B) 800 (C) 900(D) 1000。【93.基測一】
- Sol) \Rightarrow □=x, $(50-x)(x+10)=-x^2+40x+500=-(x^2-40x+20^2)+500+400$ =- $(x-20)^2+900\Rightarrow$ 當x=20時, 可得最大值
 - (D) 2.下列哪一個二次函數,其圖形和 $y=4x^2-8x$ 的圖形有相同的頂點? (A) $y=2x^2-4x$ (B) $y=-2(x+1)^2$ (C) $y=2(x+1)^2+4$ (D) $y=-2(x-1)^2-4$ 。【93.基測二】

(C) 3.如圖, $A \cdot B$ 分別為 $y = x^2$ 上兩點,且 $\overline{AB} \perp y$ 軸。若 $\overline{AB} = 6$,則直線 AB 的 方程式為何? (A) y = 3 (B) y = 6 (C) y = 9 (D) y = 36 。 【91.基測

(D) 4.如圖,將二次函數 $y=x^2$ 的圖形向右移動兩個單位長,則下列哪一個二次函數的圖形,可為虛線所表示的圖形? (A) $y=x^2+2$ (B) $y=x^2-2$ (C) $y=(x+2)^2$ (D) $y=(x-2)^2$ 《【90.基測一】

Sol) $y = x^2 \Rightarrow$ 圖形往右移2個單位 $\Rightarrow y = (x-2)^2$

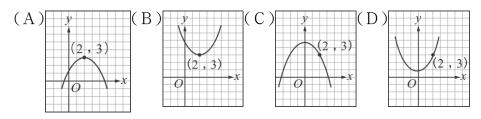

(B) 5.如圖,<u>小智</u>丟垃圾的路徑是一個二次函數 $y = -\frac{1}{3}x^2 + 2x + c$ 的圖形。已 知<u>小智</u>是在此二次函數圖形的頂點 (即 B 點)將垃圾丟出,且從 A (0,1)點進入筒內。若 B 點的坐標為 (a,b),則 b = ? (A) 3 (B) 4 (C) 5 (D) 6 。【90.基測二】

Sol)
$$y = \frac{-1}{3}x^2 + 2x + c = \frac{-1}{3}(x^2 - 6x) + c = \frac{-1}{3}(x^2 - 6x + (-3)^2) + c + 3$$

= $\frac{-1}{3}(x-3)^2 + c + 3 \Rightarrow \text{IPME}(3, c+3)$

將A(0,1)代人
$$\Rightarrow$$
 1= $\frac{-1}{3}$ (-3)²+c+3 \Rightarrow c=1 \Rightarrow 頂點(3,4) \Rightarrow b=4

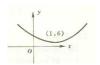
(D) 6.已知二次函數 $y=ax^2+k$,其中 a<0,k>0,下列哪一個選項可能是此二次函數的圖形?【91.基測一】



Sol) y=ax²+k, ∵a<0∴圖形開口向下,又k>0∴頂點在y軸的正向

(A) 7.若用配方法將二次函數 $y=-2x^2-4x+1$ 寫成 $y=-2(x-h)^2+k$ 的形式,求 h+k=? (A) 2(B) 4(C)-4(D)-2。【91.基測一】

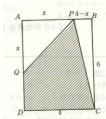
Sol)
$$y = -2(x+1)^2 + 1 + 2 = -2(x+1)^2 + 3$$
, $h = -1, k = 3, h + k = 2$


(A) 8.下列為四個二次函數的圖形,哪一個函數在 x=2 時有最大值 3? 【92. 基測一】

Sol)開口向下,頂點為(2,3)的圖形。

【模擬學力基測試題】

- (D) 1.設二次函數 y=-x²+2bx+a 圖形的最高點座標為 (2,5),請問 a+b=? (A) 0 (B) 1 (C) 2 (D) 3。
- Sol) y=- $(x-b)^2$ +a+b² 最高點 $(b, a+b^2)$ =(2,5), b=(2,5), b=
- (C) 2.請問 $y=x^2-2x+7$ 的圖形為下列何者呢?(A) 與 y 軸相交於兩點的拋物線 (B) 與 x 軸相交之橢圓(C) 與 x 軸不相交之拋物線(D) 與 x 軸相切於一點的拋物線。
- Sol) $y=(x-1)^2+6$ 可得圖形之最低點(1,6),且開口向上,(:a=1>0)...圖形與x軸無交點,但與y軸恰交於一點

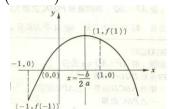

(B)3.設矩形 ABCD 中, \overline{AB} =4, \overline{AD} =6,在 \overline{AB} , \overline{AD} 上各取一點 $P \cdot Q$,使 \overline{AP} = \overline{AQ} ,

則四邊形 PQDC 之最大面積為何呢? (A)
$$\frac{31}{2}$$
 (B) $\frac{33}{2}$ (C) $\frac{35}{2}$ (D) $\frac{37}{2}$

(平方單位)

如圖, 設ĀP=ĀQ=x, □PQDC=□ABCD-△APQ-△PBC

Sol)
$$\square$$
PQDC=6×4- $\frac{1}{2}$ x²- $\frac{1}{2}$ ×6×(4-x)= $\frac{-1}{2}$ x²+3x+12= $\frac{-1}{2}$ (x²-6x+9)+12+ $\frac{9}{2}$
= $\frac{-1}{2}$ (x-3)²+ $\frac{33}{2}$ ≤ $\frac{33}{2}$ ∴當x=3時, \square PQDC有最大面積 $\frac{33}{2}$ (單位²)


(D) 4.若二次函數 y=ax²-12x+b,在 x= $\frac{-3}{2}$,有極大值 10,則數隊 (a, b) 為何呢? (A) (2,-3) (B) (-3,2) (C) (1,-4) (D) (-4,1)。

Sol)
$$y=ax^2-12x+b=a\left(x+\frac{3}{2}\right)^2+10=ax^2+3ax+\left(\frac{9}{4}+10\right) \Rightarrow \begin{cases} 3a=-12\\ \frac{9}{4}a+10=b \end{cases} \Rightarrow a=-4, b=1$$

(D) 5.如右圖, $a \neq 0$, $y=f(x)=ax^2+bx+c$,請問下列何者為正確呢?(A)

$$a \big(a + b + c\big) > 0 \ (B) \ b \big(a - b + c\big) > 0 \ (C) \ c \big(a - b + c\big) > 0 \ (D) \ a \big(b^2 - 4ac\big) < 0$$

Sol) 圖形開口朝下 \Rightarrow a<0, 頂點在y軸右側 \Rightarrow ab<0 \Rightarrow b>0 圖形交y軸於正向 \Rightarrow c>0, 圖形與x軸交相異兩點 \Rightarrow b²-4ac>0 又(1, f(1))在x軸上方 \Rightarrow f(1)>0 \Rightarrow a+b+c>0 而(-1,f(-1))在x軸下方 \Rightarrow f(-1)<0 \Rightarrow a-b+c<0 \therefore a(b²-4ac)<0

(C) 6.拋物線方程式為 $y=(a-1)x^2+ax+a$,若使拋物線開口向上,且圖形均在 x

軸上方, 請問 a 的範圍為何呢? (A) a>1 (B) a> $\frac{6}{5}$ (C) a> $\frac{4}{3}$ (D) a> $\frac{3}{2}$ 。

$$Sol)_{y=\left(a\text{-}1\right)x^{2}+ax+a^{\text{\tiny{1}}}\cancel{\mathbb{A}}\cancel{\mathbb{E}},\ \Rightarrow\begin{cases} a\text{-}1>0\\ a^{2}\text{-}4\left(a\text{-}1\right)a<0 \end{cases} \Rightarrow \begin{cases} a>1\\ a\left(3a\text{-}4\right)>0 \end{cases} \Rightarrow \begin{cases} a>1\\ a>\frac{4}{3} \text{ 1} \text{ 2} \text{ 2} \text{ 3} \text{ 3}$$

- (B) 7.有關於函數 $y=f(x)=ax^2+bx+c$,ac ≠ 0 之圖形的敘述,下列何者錯誤呢?
 - (A) 為一拋物線 (B) 與 x 軸至少有一個交點 (C) 當 b^2 =4ac 時,與 x 軸僅有一個交點 (D) 當 b=0 時,與 x 軸的交點不可能只有一個。
- Sol)當b²-4ac<0時,圖形與x軸無交點
- (C) 8.有關於函數 $y=f(x)=x^2-10x+24$ 的圖形,下列敘述何者正確呢?(A) 圖形全部落在第一象限中(B) 圖形有極小值出現在第二象限中(C) 圖形不經過第三象限(D) 圖形不經過第四象限。

 $y=f(x)=x^2-10x+24=(x-5)^2-1$ 當x=5時,有極小值(-1) ∴極小值出現在第四象限 Sol) $\Leftrightarrow y=0 \Rightarrow x^2-10x+24=0 \Rightarrow x=4$ 或 6, \Rightarrow 與x軸交於(4,0), (6,0) $\Leftrightarrow x=0 \Rightarrow y=24 \Rightarrow$ 與y軸交於(0,24) \Rightarrow 圖形不經第三象限

- (B) 9.在坐標平面上,若二次函數 $y=-3x^2+6x$ 的頂點A到原點O的距離為d, 則下列選項何者正確?(A)2 < d < 3 (B)3 < d < 4 (C)4 < d < 5 (D)5 < d < 6
- Sol) $y=-3x^2+6x=-3(x^2-2x+1)+3=-3(x-1)^2+3$, 頂點 A(1,3) ∴ $d=1^2+3^2=10$, \overrightarrow{m} 3<d<4.
- (D) $10.y = (x-h)^2$ 之圖形與下列何函數之圖形對稱於x軸 ? (A) $y = (x+h)^2$ (B) $y = x^2 + h$ (C) $y = x^2 h$ (D) $y = -(x-h)^2$
- Sol) $y=(x-h)^2$,頂點(h,0),開口向上,則與其對稱於 x 軸之圖形頂點亦為(h,0)而開口向下,即為 $y=-(x-h)^2$ 。

【進階練習題】

(A) 1.若二次函數 $y=(a+b)x^2+2cx-(a-b)$,在 $x=-\frac{1}{2}$ 時,y有最小值 $-\frac{a}{2}$,則 a:b:c=?(A)1:1:1 (B)1:2:3 (C)2:1:3 (D)1:3:4

Sol)
$$y = (a+b) x^2 + 2cx - (a-b) = (a+b) (x+\frac{1}{2})^2 - \frac{a}{2} = (a+b) x^2 + cx - (a-b) = (a+b) (x+\frac{1}{2})^2 - \frac{a}{2} = (a+b) x^2 + cx - (a-b) = (a+b) (x+\frac{1}{2})^2 - \frac{a}{2} = (a+b) x^2 + cx - (a-b) = (a+b) (x+\frac{1}{2})^2 - \frac{a}{2} = (a+b) (x+\frac{1}{$$

$$(a+b) x + \frac{a+b}{4} - \frac{a}{2}$$
 \therefore
$$\begin{cases} a+b=2c.....1 \\ -a+b=\frac{-a+b}{4}...2 \end{cases} \Rightarrow -4a+4b=-a+b, 3b=3a$$

 $\therefore a=b$ 代入 1,得 2a=2c $\therefore a=c$,則 a=b=c,a:b:c=1:1:1

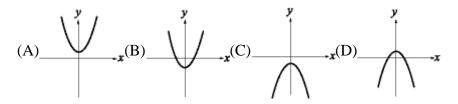
- (C) 2.二次函數y=x(36-x)的最大值為何?(A)36 (B)320 (C)324 (D)234
- Sol) $y = -x^2 + 36x = -(x^2 36x + 18^2) + 324 = -(x 18)^2 + 324 \le 324$,...最 大值 324
- (C) 3.蘋果園裡種了30棵蘋果樹,平均每棵年產400個蘋果,若在此果園中每加種一棵蘋果樹,平均每棵年產量減少10個,則應種多少棵蘋果樹才能使年產量最多?(A)5棵 (B)15棵 (C)35棵 (D)45棵
- Sol)設加種 x 棵,產量為 y 個, $y=(30+x)(400-10x)=12000+100x-10x^2$ $=-10(x^2-10x+25)+12000+250=-10(x-5)^2+12250\le 12250$ 當 x=5 時產量最大,故應種 30+5=35 (棵)
- (C) 4.下列有關二次函數 $y=-9(x-\frac{2}{3})^2+45$ 的敘述何者正確?(A)此函數圖形的 開口向上 (B)y的最小值為45 (C)y的最大值為45 (D)y的最大值為44
- Sol) $y=-9(x-\frac{2}{3})^2+45$ $:: x^2$ 項係數為-9,故圖形開口向下,有最大值 45
- (B) 5.<u>俊影</u>老師要利用 100 公尺長的繩子圍出一個矩形的花園,其邊長各為多少公尺才能使得圍成的面積最大呢?(A) 25、25 公尺(B) 20、30 公尺(C) 22、28 公尺(D) 18、32 公尺。
- Sol)設長為 x, 寬為(50-x)時, 面積=x(50-x)為最大

面積=-
$$x^2$$
+50 x =- $(x^2$ -50 x +25 $^2)$ +625=- $x(x$ -25 $)^2$ +625

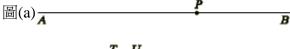
當x=25時,有面積最大值625⇒25×25

$$\left(\because a+b$$
為定值, 當 $a=b$ 時, $a\times b$ 為最大值, $\left(\frac{100}{4}\right)^2=25\times25\right)$

- (B) 6.東蔘旅行社招攬香港旅遊兩天一夜的旅行團,為避免影響品質,人數以 不超過35人為限,每人收費5000元。若人數不足35人,每減少1人則旅費 加收200元,試問此旅行社最多共可收到多少旅費?(A)175000元
 - (B)180000元 (C)190000元 (D)195000元
- Sol)設減少x人,收入為y


$$y=(35-x)(5000+200x)=175000+2000x-200x^2$$
 $=-200(x^2-10x+25)+175000+5000=-200(x-5)^2+180000\le 180000$,故最多收入 180000 元

(C) 7.若二次函數 $y = -x^2 + 2x + k - 4$ 有最大值為z,則k = ? (A)7 (B)6 (C)5 (D)4


- (D) 8. 北港溪整治工程中,水中汙泥深度為水深的 ¹/₃,則整條溪長度與水深的總和為120公尺,若將整條溪視為長方形,而每處理1平方公尺的汙泥費用為5萬元,則此工程費用最高多少元?(A)3600萬元 (B)4200萬元 (C)5400萬元 (D)6000萬元
- Sol)設水深 x 公尺,則溪長度(120-x)公尺,汙泥深 $\frac{1}{3}$ x 公尺,若費用為 y,y

$$=\frac{1}{3}$$
 x (120-x) x5= $-\frac{5}{3}$ (x²-120x+3600) +6000= $-\frac{5}{3}$ (x-60) ²+6000≤6000, 故最高 6000 萬元

(D) 9.已知二次函數 $y=ax^2+k$,其中a<0,k>0,則下列那一個選項可能是此二次函數的圖形?

Sol): $y=ax^2+k$ 中,a<0→拋物線開口向下,k>0→拋物線與 y 軸交於 y 軸上方 (B) 10如圖(a),在長度為28的 \overline{AB} 上取一點P。用 \overline{AP} 圍成一個長方形PMNO,其中 $\overline{PM}=3\overline{PO}$,再用 \overline{BP} 圍成一個正方形PVUT,如圖(b)。已知 $\overline{PO}=t$ 時,長方形與正方形的面積和有最小值s,則s=? (A)14 (B)21 (C)28 (D)49

Sol)S=
$$\overline{MP} \cdot \overline{PO} + \overline{PV}^2 = 3t \cdot t + (\frac{1}{4} (28-8t))^2 = 3t^2 + (7-2t)^2$$

= $3t^2 + 49 - 28t + 4t^2 = 7(t^2 - 4t + 4) + 49 - 28 = 7(t-2)^2 + 21 \ge 21$